Indication for Knee Arthroplasty by Cartilage Analysis
TKA is a widely used conventional solution for OA of the knee. Recently, minimally invasive surgery (MIS) has shown rapid rehabilitation and improved patient function. Indications for conventional TKA and MIS TKA are essentially the same: the presence of disabling pain associated with advanced medial and/or lateral FTJ with or without PFJ cartilage loss. However, the surgeon should have experience in conventional TKA well before undertaking MIS techniques. In addition, even with MIS, TKA is more invasive and has a longer recovery period than BKA or UKA. Removal of all three compartments of the femur, regardless of cartilage defect, may induce postoperative pain and a longer recovery period. Another serious issue with TKA is the loss of normal biomechanics. The ACL and occasionally PCL are removed during the surgery and implants need to add kinematic features that replace the function of these ligaments in order to provide original joint function. However, as a result of the restraint of implants, shearing forces will be transmitted to the bone-implant interface, which may result in subsequent loosening of the implant.
UKA with bone-sparing and cruciate-retaining prosthesis has been developed recently as a primary intervention, especially for patients with early onset medial or lateral knee OA. UKA also has various advantages in recovery times and postoperative morbidity, and has also displayed better clinical outcomes compared with those of TKA in longitudinal studies. Though there has been a report indicating very low influence of PF arthritis on the final outcome, indication for UKA must have strict criteria guidelines only allowing for single compartment cartilage damage without other factors. An anteromedial wear pattern in the medial compartment is desirable because this pattern of wear correlates with a functional ACL, which is the most important factor for the success of UKA. In the present study, two subjects who underwent UKA presented with M+L+PF or M+L compartmental greater than 50% or full thickness cartilage loss and should have been considered for TKA based on the preoperative MRI findings. On the other hand, 5 subjects who met the indication for UKA based on our MR criteria actually received TKA. These cases may have other factors such as preoperative range of motion limitations and manual ligamentous laxity of the knee that could have influenced the surgeon's choice of surgical intervention.
BKA is also a minimally invasive arthroplasty and has been established for medial OA with patellofemoral OA without ACL and PCL damage. Advantages of BKA in terms of recovery period, invasion and bone-sparing have also been reported. In addition, BKA has been reported to have potential as a prosthesis used in UKA revision. Conversely, Morrison et al. reported a higher complication rate with BKA, especially for persistent pain, and concluded that TKA was superior to BKA for medial knee OA. Unless long-term results of BKA are established, most surgeons may choose conventional TKA for the treatment of medial and patellofemoral OA. Taking these facts into consideration, however, it is unclear whether poor patient selection contributes to these complications. We think BKA should be strictly limited for medial/lateral OA with patellofemoral OA without any other factors. In the present study, a total of 31 subjects (17 for medial BKA (Figure 3(a), (c)) and 14 for lateral BKA (Figure 3(b), (d)) met the indication for BKA. Although further prospective, randomized studies on the long-term outcomes are needed in order to establish and determine the efficacy of BKA, there is outstanding potential for the treatment of younger or very active patients with knee OA if the selection of patients for the procedure is done properly.
The present study demonstrates that there are many medial or lateral compartment OA subjects with or without patellar compartment cartilage defects identified in preoperative MRIs in the OAI study. These results suggest that the indication for partial arthroplasty, such as UKA or BKA, might increase when cartilage and accompanying factors are comprehensively evaluated in each compartment preoperatively. However, 97.7% of arthroplasties performed were actually TKAs in the OAI study. This TKA rate is significantly higher than that estimated from MR findings based on cartilage loss, ligamentous injury, bone marrow edema, and subchondral cysts. Therefore, we may need to analyze and diagnose cartilage loss in each compartment more carefully and comprehensively in order to decide the most appropriate type of arthroplasty.
There are several limitations in the present study. First, the sample size was small. Second, it is difficult to assess the knee joint preoperatively by MR findings alone to decide on the best surgical method as surgeons must take into account other factors such as the patient's age, sex, weight, pain, range of motion of the knee, presence of contracture, activity, past medical history, present illness and radiological alignment. Indeed, in some cases, subjects do not complain of any pains despite terrible cartilage damage. In such a case, surgeons should not choose to do arthroplasty. Surgeons have to consider not only MRI findings but also pain localization in implant selection. Third, as this is a retrospective study using data from the OAI public use data set, we could not assess the relationship between MRI and arthroscopic findings. In addition, the evaluation and interpretation of cartilage loss depends on the surgeon's scale, experience, and familiarity with MRI. Finally, in this study we evaluated MR findings to decide optimal arthroplasty indication by an experienced orthopedic surgeon and musculoskeletal radiologist in consensus. However, it would be more objective to have each reader evaluate MR findings independently and assess the interreader reproducibility for MR finding criteria.
Discussion
Most Popular Surgery for Knee OA: TKA
TKA is a widely used conventional solution for OA of the knee. Recently, minimally invasive surgery (MIS) has shown rapid rehabilitation and improved patient function. Indications for conventional TKA and MIS TKA are essentially the same: the presence of disabling pain associated with advanced medial and/or lateral FTJ with or without PFJ cartilage loss. However, the surgeon should have experience in conventional TKA well before undertaking MIS techniques. In addition, even with MIS, TKA is more invasive and has a longer recovery period than BKA or UKA. Removal of all three compartments of the femur, regardless of cartilage defect, may induce postoperative pain and a longer recovery period. Another serious issue with TKA is the loss of normal biomechanics. The ACL and occasionally PCL are removed during the surgery and implants need to add kinematic features that replace the function of these ligaments in order to provide original joint function. However, as a result of the restraint of implants, shearing forces will be transmitted to the bone-implant interface, which may result in subsequent loosening of the implant.
Indication for UKA
UKA with bone-sparing and cruciate-retaining prosthesis has been developed recently as a primary intervention, especially for patients with early onset medial or lateral knee OA. UKA also has various advantages in recovery times and postoperative morbidity, and has also displayed better clinical outcomes compared with those of TKA in longitudinal studies. Though there has been a report indicating very low influence of PF arthritis on the final outcome, indication for UKA must have strict criteria guidelines only allowing for single compartment cartilage damage without other factors. An anteromedial wear pattern in the medial compartment is desirable because this pattern of wear correlates with a functional ACL, which is the most important factor for the success of UKA. In the present study, two subjects who underwent UKA presented with M+L+PF or M+L compartmental greater than 50% or full thickness cartilage loss and should have been considered for TKA based on the preoperative MRI findings. On the other hand, 5 subjects who met the indication for UKA based on our MR criteria actually received TKA. These cases may have other factors such as preoperative range of motion limitations and manual ligamentous laxity of the knee that could have influenced the surgeon's choice of surgical intervention.
Indication for BKA
BKA is also a minimally invasive arthroplasty and has been established for medial OA with patellofemoral OA without ACL and PCL damage. Advantages of BKA in terms of recovery period, invasion and bone-sparing have also been reported. In addition, BKA has been reported to have potential as a prosthesis used in UKA revision. Conversely, Morrison et al. reported a higher complication rate with BKA, especially for persistent pain, and concluded that TKA was superior to BKA for medial knee OA. Unless long-term results of BKA are established, most surgeons may choose conventional TKA for the treatment of medial and patellofemoral OA. Taking these facts into consideration, however, it is unclear whether poor patient selection contributes to these complications. We think BKA should be strictly limited for medial/lateral OA with patellofemoral OA without any other factors. In the present study, a total of 31 subjects (17 for medial BKA (Figure 3(a), (c)) and 14 for lateral BKA (Figure 3(b), (d)) met the indication for BKA. Although further prospective, randomized studies on the long-term outcomes are needed in order to establish and determine the efficacy of BKA, there is outstanding potential for the treatment of younger or very active patients with knee OA if the selection of patients for the procedure is done properly.
Surgical Indication for Knee Arthroplasty Based on MR Finding Criteria
The present study demonstrates that there are many medial or lateral compartment OA subjects with or without patellar compartment cartilage defects identified in preoperative MRIs in the OAI study. These results suggest that the indication for partial arthroplasty, such as UKA or BKA, might increase when cartilage and accompanying factors are comprehensively evaluated in each compartment preoperatively. However, 97.7% of arthroplasties performed were actually TKAs in the OAI study. This TKA rate is significantly higher than that estimated from MR findings based on cartilage loss, ligamentous injury, bone marrow edema, and subchondral cysts. Therefore, we may need to analyze and diagnose cartilage loss in each compartment more carefully and comprehensively in order to decide the most appropriate type of arthroplasty.
Study Limitations
There are several limitations in the present study. First, the sample size was small. Second, it is difficult to assess the knee joint preoperatively by MR findings alone to decide on the best surgical method as surgeons must take into account other factors such as the patient's age, sex, weight, pain, range of motion of the knee, presence of contracture, activity, past medical history, present illness and radiological alignment. Indeed, in some cases, subjects do not complain of any pains despite terrible cartilage damage. In such a case, surgeons should not choose to do arthroplasty. Surgeons have to consider not only MRI findings but also pain localization in implant selection. Third, as this is a retrospective study using data from the OAI public use data set, we could not assess the relationship between MRI and arthroscopic findings. In addition, the evaluation and interpretation of cartilage loss depends on the surgeon's scale, experience, and familiarity with MRI. Finally, in this study we evaluated MR findings to decide optimal arthroplasty indication by an experienced orthopedic surgeon and musculoskeletal radiologist in consensus. However, it would be more objective to have each reader evaluate MR findings independently and assess the interreader reproducibility for MR finding criteria.
SHARE