Gut Microbiota Disturbance During Antibiotic Therapy
Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy.
Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated.
Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by 'presumptive' naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while 'presumptively' attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation.
Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.
The human colon harbours a vast ensemble of microbes that carry out vital processes for human physiology and nutrition, and the microbes in this complex ecosystem are defined as the microbiota. Accordingly, the human colon can be viewed as an anaerobic bioreactor in which trillions of microorganisms add a vast catalogue of genes to the genetic resources of the host to provide complementary metabolic pathways for energy harvest, food digestion, detoxification, the production of bioactive compounds and the assimilation of otherwise inaccessible dietary nutrients. Recent studies have shown that each individual harbours a unique and relatively stable gut microbiota, generally dominated (over 90%) by the Bacteroidetes and Firmicutes, in addition to minorities of Actinobacteria, Proteobacteria and Verrucomicrobia, the majority of which have not yet been isolated or characterised. However, this well engaged bacterial machinery can be disrupted by external factors such as antibiotic (AB) treatment. AB therapy has been successfully used for many years to treat bacterial infections, but the emergence of AB-resistant bacteria has caused enormous public health problems. Moreover, resistant species can persist in the human gut for years.
AB therapies affect not only the target microorganism but also the host-associated microbial communities, particularly those in the intestine. In recent years, the effects of distinct ABs on the gut microbiota have been evaluated, primarily by 16S rRNA analysis. The patterns of microbial diversity and gene-encoded functions are highly intricate, and contradictory reports on the compositions of microbial communities have complicated the identification of functional and molecular hotspots associated with AB therapy in humans. Recent experiments have revealed that treatment with broad-spectrum ABs affects the microbiota composition, resulting in a significant reduction in Bacteroidetes and a concurrent increase in Firmicutes. Moreover, different studies have reported bacterial resilience following AB treatment.
The understanding of the dynamics and mechanisms underlying functional changes in the microbiome in response to AB treatments remains limited, primarily because most research to date has relied on indirect evidence from DNA-based approaches that fail to provide information on actual gene expression, protein synthesis and metabolite composition and variation. Moreover, no integrated metatranscriptomic, metaproteomic or metametabolomic surveys on AB-treated human microbiota have been performed. Specifically, in the gut ecosystem, few studies have focused on metatranscriptomics. Turnbaugh et al focused on gene expression analysis in faecal samples from a monozygotic twin pair, whereas Booijnk et al and Gosalbes et al studied the faecal metatranscriptomes of healthy volunteers using cDNA amplified fragment length polymorphism and pyrosequencing, respectively. Proteomic platforms have also been used to separate and identify thousands of proteins in faecal samples from healthy individuals, but these analyses have not uncovered the effect of ABs on the stability or expression of core proteins or their functions. Finally, metabolic changes in mouse—but not human—gut microbiota following treatment with the broad-spectrum AB enrofloxacin were recently evaluated using nuclear magnetic resonance based metabolomics. However, this study yielded limited information because the faecal samples were only analysed for changes in eight metabolites, including increased levels of amino acids and urea caused by the loss of microbial proteases and ureases, and reduced levels of acetate, butyrate and propionate generated by lactate-using bacteria.
In this study, we provide the first report of AB-treatment related changes in the faecal microbiota, including the total microbiota, active microbiota, metagenome, metatranscriptome, metametabolome and metaproteome. This multi-omics approach yielded a global picture of the microbial community structure and the metabolic status of the gut ecosystem, which is paramount to understanding the total effect of a given AB and to establishing correlations with host physiology. This study of one patient constitutes a proof of concept for this approach.
Abstract and Introduction
Abstract
Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy.
Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated.
Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by 'presumptive' naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while 'presumptively' attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation.
Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.
Introduction
The human colon harbours a vast ensemble of microbes that carry out vital processes for human physiology and nutrition, and the microbes in this complex ecosystem are defined as the microbiota. Accordingly, the human colon can be viewed as an anaerobic bioreactor in which trillions of microorganisms add a vast catalogue of genes to the genetic resources of the host to provide complementary metabolic pathways for energy harvest, food digestion, detoxification, the production of bioactive compounds and the assimilation of otherwise inaccessible dietary nutrients. Recent studies have shown that each individual harbours a unique and relatively stable gut microbiota, generally dominated (over 90%) by the Bacteroidetes and Firmicutes, in addition to minorities of Actinobacteria, Proteobacteria and Verrucomicrobia, the majority of which have not yet been isolated or characterised. However, this well engaged bacterial machinery can be disrupted by external factors such as antibiotic (AB) treatment. AB therapy has been successfully used for many years to treat bacterial infections, but the emergence of AB-resistant bacteria has caused enormous public health problems. Moreover, resistant species can persist in the human gut for years.
AB therapies affect not only the target microorganism but also the host-associated microbial communities, particularly those in the intestine. In recent years, the effects of distinct ABs on the gut microbiota have been evaluated, primarily by 16S rRNA analysis. The patterns of microbial diversity and gene-encoded functions are highly intricate, and contradictory reports on the compositions of microbial communities have complicated the identification of functional and molecular hotspots associated with AB therapy in humans. Recent experiments have revealed that treatment with broad-spectrum ABs affects the microbiota composition, resulting in a significant reduction in Bacteroidetes and a concurrent increase in Firmicutes. Moreover, different studies have reported bacterial resilience following AB treatment.
The understanding of the dynamics and mechanisms underlying functional changes in the microbiome in response to AB treatments remains limited, primarily because most research to date has relied on indirect evidence from DNA-based approaches that fail to provide information on actual gene expression, protein synthesis and metabolite composition and variation. Moreover, no integrated metatranscriptomic, metaproteomic or metametabolomic surveys on AB-treated human microbiota have been performed. Specifically, in the gut ecosystem, few studies have focused on metatranscriptomics. Turnbaugh et al focused on gene expression analysis in faecal samples from a monozygotic twin pair, whereas Booijnk et al and Gosalbes et al studied the faecal metatranscriptomes of healthy volunteers using cDNA amplified fragment length polymorphism and pyrosequencing, respectively. Proteomic platforms have also been used to separate and identify thousands of proteins in faecal samples from healthy individuals, but these analyses have not uncovered the effect of ABs on the stability or expression of core proteins or their functions. Finally, metabolic changes in mouse—but not human—gut microbiota following treatment with the broad-spectrum AB enrofloxacin were recently evaluated using nuclear magnetic resonance based metabolomics. However, this study yielded limited information because the faecal samples were only analysed for changes in eight metabolites, including increased levels of amino acids and urea caused by the loss of microbial proteases and ureases, and reduced levels of acetate, butyrate and propionate generated by lactate-using bacteria.
In this study, we provide the first report of AB-treatment related changes in the faecal microbiota, including the total microbiota, active microbiota, metagenome, metatranscriptome, metametabolome and metaproteome. This multi-omics approach yielded a global picture of the microbial community structure and the metabolic status of the gut ecosystem, which is paramount to understanding the total effect of a given AB and to establishing correlations with host physiology. This study of one patient constitutes a proof of concept for this approach.
SHARE