Biomechanical Testing for Proximal Humerus Fracture Implants
The primary strength of this scoping review is the ability to identify key development areas to improve the quality and relevance of biomechanical modeling for proximal humerus fracture treatments. Our results suggest a strong need for implant testing in three- and four-part fracture models, testing of shoulder arthroplasty prostheses in a PHF model, and standardization of testing parameters to ensure results can be compared between studies. We anticipate this review will serve as springboard for designing studies aiming to address these key gaps in the future application of biomechanical testing for proximal humerus fracture treatments.
Conclusion
The primary strength of this scoping review is the ability to identify key development areas to improve the quality and relevance of biomechanical modeling for proximal humerus fracture treatments. Our results suggest a strong need for implant testing in three- and four-part fracture models, testing of shoulder arthroplasty prostheses in a PHF model, and standardization of testing parameters to ensure results can be compared between studies. We anticipate this review will serve as springboard for designing studies aiming to address these key gaps in the future application of biomechanical testing for proximal humerus fracture treatments.
SHARE